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Building on the unpublished ideas of C. McBride and ideas from “Displayed Type Theory and
Semi-Simplicial Types”1 by A. Kolomatskaia and M. Shulman, we propose a novel extension
for univalent Martin-Löf Type Theories (MLTTs) for internalizing Reedy categories.

Indexing and fibering over Reedy types provide effective machinery to deal with syntaxes that
include binding and become indispensable when internalizing the syntax and semantics of
type theories themselves. In this way, we obtain convenient tooling and uniformly establish
the existence of initial models for structures like weak ω-categories,2 virtual equipments,3
(∞,1)-toposes once the Higher Observational Type Theory (HOTT)4 is complete.

Finally, this approach should lead to a homoiconic5 univalent type theory, i.e. one capable of
representing its syntax as an inductive family and thus performing structural induction over it.

1 Why do we need dependent type families?
Finitary type families abstractly embody formalized languages. For example, consider the
following simple language of arithmetic and logical expressions:6

data ExpressionKind

Numeric

Logical

data Expr : ExpressionKind → Type

Literal(n : Int) : Expr Numeric

Sum(a b : Expr Numeric) : Expr Numeric

Mul(a b : Expr Numeric) : Expr Numeric

Div(a b : Expr Numeric) : Expr Numeric

Pow(a b : Expr Numeric) : Expr Numeric

Neg(a : Expr Numeric) : Expr Numeric

Log(a : Expr Numeric) : Expr Numeric

Eq(a b : Expr Numeric) : Expr Logical

Lt(a b : Expr Numeric) : Expr Logical

Or(a b : Expr Logical) : Expr Logical

Not(a : Expr Logical) : Expr Logical

Dependent type families allow scaling up this approach to languages with scoped binders
(variables, type definitions) including general-purpose programming languages themselves.

Data types defined that way are inhabited by abstract syntax trees corresponding to finite
expressions of the language, and they come with a recursive descent analysis operator enabling
type-driven design of correct-by-construction analysers and interpreters facilitating robust type
checking, compilation, static analysis, and abstract interpretation in general.

As for IDEs, inductive type families enable designing biparsers for those languages, parsers that
maintain a one-to-one mapping between the source code and the respective annotated abstract
syntax tree, enabling both fast incremental reparsing and mechanized refactoring.
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6This paper is written in literate dependent Kotlin, see https://akuklev.github.io/kotlin/kotlin_literate.pdf.
We use an Agda-like syntax for inductive definitions, except using angle brackets for type parameters and
irrelevant function parameters, allowing to concisely introduce records as inductive types with a unique generator.
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To represent languages with typed variables, one introduces the type Ty representing variable
types of the language, and the type family Tm (ctx : Ty

∗
) of terms in a given context given by

a list of types. Definition of term substitution can be vastly simplified if one recasts the type of
contexts as a size-indexed type family Ctx (size : LΔ), which requires the notion of lax types
(such as LΔ) to enable context extension. In case of dependently typed languages, Ty is not a
type, but a type family Ty (c : Ctx), where the contexts are iterated dependent pairs

data Ctx

Empty : Ctx

Append(prefix : Ctx, head : Ty prefix)

To define substitution, we have to recast Ctx as a simplicial type family Ctx (shape : Δ),
which requires the notion of Reedy types (such as Δ) that enable selection of subcontexts.
Bidirectionally typed languages split terms into a type family of normal forms satisfying a given
type Nf (c : Ctx, t : Ty c) and a fibered family of reducible expressions that synthesize their
types and normal forms Rx : (c : Ctx)d ↓ (ty : Ty c, Nf (c, ty)).

2 Setting and basics
Our base theory will be the Higher Observational Type Theory with a hierarchy of ΠΣ-closed
cumulative universes Type : Type⁺ : Type⁺⁺ : ··· featuring ◻-modality-based polymorphism,7
adjoined by quotient inductive-inductive-recursive type definitions.

The definitions of that kind are of the finite datatypes (also known as enums) defined by
enumerating their possible values:8

data Bool

False `ff`

True `tt`

data Unit

Point `()`

data Void {} ^// no elements at all

We can generalize them to sum types by allowing indexed families of possible values:9

data Possibly<X>

Nothing

Value(x : X)

Each inductive type comes along with a dual typeclass:10

data BoolR <this Y>(ifTrue : Y,

ifFalse : Y)

data PossiblyR <X, this Y>(ifNothing : Y,

ifValue(x : X) : Y)

Instances of these typeclasses represent by-case analysis of the respective sum types.

Inhabitants of inductive types x : T can be converted into functions11 (known as Church
representations) that evaluate their by-case analysers: xc : ∀<Y : TR > Y:

7
https://akuklev.github.io/polymorphism.pdf

8Fancy aliases for plain identifiers can be introduced in backticks. See kotlin_academic.pdf for details.
9We omit the type of X in Possibly<X>, because parameter types can be omitted if inferrable.

10Typeclasses are introduced as records with a marked (by this), possibly higher-kinded, typal parameter, but
turn into a subtype of their marked parameter’s type, e.g. BoolR ^<: Type, so every T : BoolR is both a type and
an instance of BoolR <T>, which does not introduce ambiguities since types and families cannot have fields, while
typeclass instances are records and consist from their fields. See kotlin_typeclasses.pdf for details.

11Result type in definitions can be omitted in assignment-style definitions as here.
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def False<Y : BoolR >c = Y.ifFalse

def True<Y : BoolR >c = Y.ifTrue

def Nothing<X, Y : PossiblyR <X>>c = Y.ifNothing

def Value<X, Y : PossiblyR <X>>(x : X)c = Y.ifValue(x)

What if we want to return values of different types for True and False? We can first define a
function from booleans into types Y : Bool → Type and then a dependent case analyser

data BoolM <this Y : Bool → Type>(ifTrue : Y True,

ifFalse : Y False)

To apply dependent case analysers to inhabitants of the respective type, we need a special
operator called induction for reasons explained below:12

I-ind<Y : IM > : ∀(x : I) Y(x)

Non-finite inductive types admit (strictly positive) recursion in type definitions, enabling such
types as natural numbers, lists, and trees:

data Nat `ℕ`

Zero `0`

PosInt(pred : ℕ) `pred⁺`

data Int `ℤ` :> Nat

NegInt(opposite : PosInt) ^// So, Int is either Nat or NegInt

data List<T> `T
∗
`

EmptyList : T
∗

NonEmptyList(head : T, tail : T
∗
) : T

∗

data BinTree<T>

Leaf

Node(label: T, left : BinTree<T>, right : BinTree<T>)

data VarTree<T>

Leaf

Node(label: T, branches : VarTree<T>
∗
)

data InfTree<T>

Leaf

Node(label: T, branches : Nat → InfTree<T>)

All above examples except infinitely branching trees are finitary inductive types, i.e. inductive
types with the property that all of their generators have a finite number of parameters, and all
these parameters are of finitary inductive types. Finitary inductive types may be infinite, but
their inhabitants can be encoded by natural numbers or equivalently finite bit strings.

Finitary inductive types embody single-sorted languages. They are inhabited by abstract syntax
trees corresponding to finite expressions of the language formed by their generators.

“Case analysis” for the type of natural numbers provides n-ary iteration operator:

data NatR <this Y>(base : Y,

next(p : Y) : Y)

Analysing a natural number n by R : NatR <Y> yields nc <R>() = (R.next)n R.zero, allowing
to iterate arbitrary functions given number of times. In general, “case analysis” turns into
“recursive descent analysis”. For lists and trees we obtain the respective fold operators.

Type-valued functions on natural numbers Y : Nat → U can encode arbitrary predicates, and
a dependent Nat-analyser NatM <Y> encodes an induction motive: it establishes a proof of the

12In Displayed Type Theory I-ind<Y : IM >(x : I) can be defined as xc ᵈ<Y>, and IM as IR ᵈ Ic .
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base case Y(zero) and the inductive step Y(n) → Y(n⁺). Dependent case analysis operator turns
induction motives into to proof the predicate for all natural numbers, that is why it is also
known as induction operator. The presence of induction witnesses that inductive types contain
only inhabitants that can be obtained by finite compositions of their generators. Which is also
the reason why data types described in terms of their generators are called inductive types.

While ordinary inductive types are freely generated, quotient inductive types additionally
contain generators of identities between their inhabitants, so we can define rational numbers:

data Rational(num : Int, den : PosInt) `ℚ`

expand<num, den>(n : PosInt) : Rational(num, den) = Rational(num · n, den · n)

Here, in addition to listing generators, we require that some actions on generators (expanding
the fraction or permuting list elements) must be irrelevant for all predicates and functions
defined on these types.

An inductive definition may simultaneously define a family of types dependent on one another.
This is not limited to finite families: we can allow type families indexed by an arbitrary type J:

data SizedList<T> : Nat → Type ^// Also known as Vec T n in Agda

EmptySizedList : SizedList<T> 0

NonEmptySizedList<n>(head : T, tail : SizedList<T> n) : SizedList<T> n⁺

This way we can also introduce finite types of a given size (used as an implicit conversion):

data operator asType : Nat → Type ^// Also known as Fin n in Agda

Fst<size> : asType size⁺

Nxt<size>(prev : size) : asType size⁺

Now we can use numbers as types which come in handy for advanced collections:

data HList<T : Nat → Type><n : Nat>(items : n → T n) ^// Heterogeneous lists

data Collection<T><size : Nat>(items : size → T) ^// Finite multisets

permute<size, items>(p : size!) : Collection(items) = Collection(items ∘ p)

data FinSet<T><size : Nat>(items : size → T) ^// Finite sets

multipermute<n, m, items>(inj : n ↣ m) : FinSet(items) = FinSet(items ∘ inj)

where T! is the type of automorphisms (permutations) of the type T, X ↣ Y the type of injections.

3 Lax types: injective Reedy categories
Consider the quotient inductive type of eventually-zero sequences:

data EvZeroSeq

Zeros : EvZeroSeq

Prepend(head : Nat, tail : EvZeroSeq)

expand : Prepend(0, Zeros) = Zeros

As we have seen above, we can turn the type of lists to a size-indexed type family over Nat,
but we cannot make EvZeroSeq into a type family over Nat because extend generates equality
between “lists” of different sizes. We need a “lax” index type instead of Nat:

data LaxNat `LΔ` : ℓType

LaxNat(n : Nat) ^// Ordinary constructor LaxNat(n)

LaxNat(n) [m : Nat⟩ LaxNat(n + m) ^// Higher directed constructor [m⟩

[n⟩ [m⟩ ↦ [(n +) m⟩ ^// This reduction is the action of [n⟩ on [m⟩

To each universe U we’ll have an associated lax universe ℓU occupied by the types like the one
above. Lax inductive types are stratified directed counterparts of quotient inductive types.
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Ordinary types T : U admit types (x ≃ y) : U of identifications between their elements x y : T,
written (x = y) : Prop for strict data types. Similarly, lax types S : ℓU admit extender types:
for every element s : S, there is a type family s↑ : Pd . We will write s ↑ t for s↑ t.

Quotient inductive types admit generators of identities x = y between their elements. Lax
types allow generators of extenders like s [n⟩ t that generate inhabitants of the type s ↑ t.
Sources of extenders must be structurally smaller than (or equal to) their targets to enable
typechecking. Whenever we define an extender s [n⟩ t , we must also define how it acts on
all possible extenders e : t ↑ t' yielding some [f n⟩ : s ↑ t'. This action must be given by
some function f to ensure associativity by construction (because function composition is), and
the action of level extenders e : s ↑ s must be given by the id function. Putting everything
together, lax types form strictly associative inverse (= injective Reedy) categories.

Every function we define on a lax type must have an action on all generators, including extender
generators, mapping them either to identities or extenders between results (functoriality).
To have an example, let us define addition for LaxNats:

def add : LaxNat² → LaxNat

(LaxNat(n), LaxNat(m)) ↦ LaxNat(m + n)

(n[k⟩, m) ↦ add(n, m) [k⟩

(n, m[k⟩) ↦ add(n, m) [k⟩

Let us denote universes of J-indexed type families by Jd instead of J → Type. It does not make
any difference ordinary types J : U , but for lax types it provides additional flexibility required
to introduce SizedEvZeroSeq as desired.

data SizedEvZeroSeq : LaxNatd

Zeros : SizedEvZeroSeq LaxNat(0)

Prepend<n>(head : Nat, tail : SizedEvZeroSeq n) : EvZeroSeq (LaxNat(1) + n)

expand : ???

Before we fill in the gap in the above definition, note that inductive families F : Jd also act
on on extenders e : s ↑ t for s t : J. Terms of F(e) are generators of the type F(s) ↑ F(t),
whose elimination rule provides domain substitution for functions defined on F(s):

F(e)c : ∀<Y> (F(t) → Y) → (F(s) → Y) ^// We also have a dependent version:

F(e)c ᵈ: ∀<Y : F(t)d > (∀(x : F(t)) Y(x)) → (∀(x : F(s)) F(e) Y)(x))

Now we can fill in the gap in the definition of SizedEvZeroSeq. The type of the equality
generator Prepend(0, Zeros) = Zero does not typecheck because its left- and right-hand sides
have different types. Let us rewrite its type by abstracting an anonymous function and
immediately applying it:13

{ Prepend(0, Zeros) = it } f. Now we can apply the extender
(SizedEvZeroSeq LaxNat(0)[1⟩)c to the function. This way we change the domain of the
function from SizedEvZeroSeq LaxNat(1) to SizedEvZeroSeq LaxNat(0) and apply it to Zeros.

data SizedEvZeroSeq : LaxNatd

Zeros : SizedEvZeroSeq LaxNat(0)

Prepend<n>(head : Nat, tail : SizedEvZeroSeq n) : SizedEvZeroSeq (LaxNat(1) + n)

expand : (SizedEvZeroSeq LaxNat(0)[1⟩)c { Prepend(0, Zeros) = it } Zeros

13Anonymous functions are written like { n : Int ↦ n + 1 } or { it + 1 }. Types can be omitted if inferrable.
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4 Lax algebraic theories
Models of single-sorted algebraic theories arise as dual typeclasses for quotient inductive types
we will call prototypes of those theories. Monoids arise as models for the following type:

data MonoidP

e : MonoidP

(∘) : MonoidP → MonoidP → MonoidP

unitorL : x = e ∘ x

unitorR : x = x ∘ e

associator : (x ∘ y) ∘ z = x ∘ (y ∘ z)

The dual typeclass MonoidP ᴿ<T> will be automatically called Monoid<T>. The canonical examples
of monoids are lists under concatenation (free monoids) and endomorphisms under composition:

object List<T> : Monoid(EmptyList, (++)) ^// Implicitly resolvable instances

object Endo<T> `T⟲`: Monoid<T → T>(id, (∘)) ^// of typeclasses are introduced as

object Auto<T> `T!`: Group<T ↔ T>(id, (∘), ( ⁻)) ^// companion objects of typeformers

We can also provide an unbiased definition for monoids, where the composition operation is not
taken to be binary, but can have any finite arity including zero for the neutral element e. Let
us introduce several types:

data PTree<T>

Leaf(label : T)

Node(branches : PTree<T>
∗
)

data SizedPTree<T> : ℕd

Leaf(label : T) : SizedPTree<T> 1

Node<sizes : ℕ
∗
>(branches : HList<T> sizes) : SizedPTree<T> (sum sizes)

A pr : Parenthesization(n : ℕ) is just a SizedPTree<Unit> n that acts on lists xs : T
∗ turning

them into respective trees pr(xs) : PTree<T>.

Now we can proceed to the definition of an unbiased monoid:

data MonoidP

compose : MonoidP
∗

→ MonoidP

expand(xs : MonoidP
∗
, pr : Parenthesization xs.size)

: compose(xs) = (pr(xs) ▸map compose)

If we can orient equalities so they map structurally smaller terms to structurally larger ones, we
can reformulate the theory as a lax type with extenders instead of identities. Algebraic theories
with extenders are known as lax algebraic theories.

data LaxMonoidP : ℓType

compose : LaxMonoidP
∗

→ LaxMonoidP

compose(xs) [pr : Parenthesization xs.size⟩ (pr(xs) ▸map compose)

[pr⟩ [pr'⟩ ↦ [expand (pr' ∘) p⟩

When mapping into ordinary types, extenders can only be mapped into identities, so exchanging
identities for extenders does not affect set-like models, but enforces coherence in non-truncated
models as their functoriality must hold by construction. When mapping into lax types, lax
theories have additional lax models as we will see below in the lax monoidal category example.

Lax formulation has an advantage even if we’re only interested in set-like models as it provides
an explicitly confluent system of rules making the theory stratified. Stratifiability of the sort
algebra is necessary for generalized algebraic theories to have syntactic free models and an
effective model structure on the category of their models.
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5 Fibered types
Many operations on containers have the following property: the shape of the resulting container
only depends on the shapes of the arguments. For example, size of the list computed by
concatenate, map, and reverse can be computed based on the sizes of the input lists.

To account for that, let us introduce a notion of fibered types and functions between them,
namely the functions with the property described above.

A fibered type is given by a pair of a type E and a function f : E → B written as E / f. We will
denote the type of such terms as E ↓ B and occasionally (e : E) ↓ B(e) in case of dependent
functions.

Fibered types above some base type B : U form a type family ↓B and E ↓ B ^:= ↓B E is just a
reverse application:

data ↓B : Ud

(E : U) / (f : E → B) : E ↓ B

For example, we can take the type of lists T
∗ and the function size: T

∗
/ size : T

∗
↓ ℕ.

A function between fibered types is a pair of functions (f / b) : (X / p) → (Y / q), so that
the following square commutes by construction:

X --[f]--> Y

|p |q

V V

A --[b]--> B

Consider a few examples of functions on fibered types:

def reverse<T> / id : (T
∗

/ size) → (T
∗

/ size)

def concat<T> / add : (T
∗

/ size)² → (T
∗

/ size)

def flatten<T> / sum : (T
∗

/ size)
∗

→ (T
∗

/ size)

def map<X, Y>(f : X → Y) / id : (X
∗

/ size) → (Y
∗

/ size)

Inductive-recursive definitions are mutually dependent definitions of an inductive type and a
recursive function on that type. Such definitions naturally generate a fibered type.

data V : ↓Type

MyUnit / Unit

MyBool / Bool

MyPi(X : V, Y : X → V) / ∀(x : X) Y(x)

We will use |_| as the default name for the fibering function unless it is explicitly named. A
similar notion of fibered types in that sense was first introduced in “Fibred Data Types”14 by
N. Ghani, L. Malatesta; F. Nordvall Forsberg, and A. Setzer.

Type families T : Xd can be fibered over type families Y : Xd . For this case, we will introduce
the notation (x : X)d ↓ Y(x). Unless X : U is a shape, it is equivalent to ∀(x : X) (U ↓ Y(x)).

Fibered types allow introducing dependent extender types: for a type X : U and a fibered type
Y : Y' / X, extenders X ↑ Y are terms e : ∀<Z : Xd > (∀(x : X) Z(x)) → (∀(y : Y') Z(|y|))

so that { |e(f(it))| } = f by construction.

Σ-type former is tightly connected to fibered types. For every type family Y : Bd , we have the
fibered type Σ'Y / fst : ΣY ↓ B. On the other hand, Σ<J : U> : Jd → U maps type families
into types, so for every J we have a fibered type Jd / Σ<J>.

14
https://doi.org/10.1109/LICS.2013.30
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6 Matryoshka types: projective Reedy categories
So far we only applied the operator ( ᵈ) to types T : U, but this operator has been introduced
in Displayed Type Theory for all terms, including type families F : Bd for some B : U

Fd : Bd → U

Fd (E : Bd ) = ∀<i> (F i) → E i

Let us now extend the definition of ( ᵈ) to fibered types:

(X / |·|)d : ∀(x : X) (|x|d Y)d

Now let us introduce matryoshka types fibered over type families indexed by themselves:

data SΔ1 : ↓SΔ1d

Fst / Void

Snd / data

Dep : |Snd| Fst

Here we define a type with two generators Fst and Snd, and for each one a type family |x| :

SΔ1d . In this case, |Fst| is empty and |Snd| contains a unique element Dep : |Snd| Fst.

Let us now consider a type family Y : SΔ1 / |·|)d . Let us first apply it to Fst:

Y(Fst) : (|Fst|d Y)d

Y(Fst) : (|Void|d Y)d

Y(Fst) : (Unit)d

Y(Fst) : Type

So, Y(Fst) is just any type. Now let us apply it to Snd:

Y(Fst) : (|Snd|d Y)d

|Snd| is itself a type family fibered over SΔ1, so |Snd|d expects an argument of the same type
as |Snd| and morally reduces to the “dependent function type” ∀<xs> (|x| xs) → Y xs (not a
valid expression as xs is not a single argument, but a telescope).

Fortunately, |Snd| is nonempty for only one argument, namely Fst, so we have

Y(Snd) : (Y(Fst))d

Thus, our type family is merely a dependent pair Σ(T : Type) (T → Type). We can now define
dependent types as type families. Let us try a more complex example:

data SΔ2 : ↓SΔ2d

El1 / Void

El2 / data

Dep : |El2| El1

El2 / data

Dep : |El3| El2 ??

We run into a problem: |El3| is a type family over a fibered type, so |El3| El2 expects yet
another argument, and it should be of the type |El3| El1. We have no other way but to create
a suitable element:

data SΔ2 : ↓SΔ2d

El1 / Void

El2 / data

Dep : |El2| El1

El2 / data

Dep1 : |El3| El1

Dep2 : |El3| El2 Dep1

8



Typechecking requires, indexes of the types |x| to be be structurally smaller than x. As we
now see, such types form strictly associative direct (= projective Reedy) categories.

Vocabularies V of theories with dependent sorts can be expressed as finite matryoshka types,
theories being typeclasses of families Carrier : Vd . Algebraic theories with dependent sorts are
typeclasses dual to type families Prototype : Vd . Categories themselves have the vocabulary

data Cell2₊ : ↓Cell2₊d
Ob / Void

Mor / data

Source : |Mor| Ob

Target : |Mor| Ob

The canonical infinite example is the type of abstract semi-simplices

data SΔ : ↓SΔd

Zero / Void

Next(s : SΔ) / data

Prev(p : |s|) : |Next(s)| p

Last : |Next(s)| s Prev(s)

Type families over SΔ are known as semi-simplicial type families, infinite type telescopes

(T₁ : Type,

T₂(x₁ : T₁) : Type,

T₃(x₁ : T₁, x₂ : T₂ x₁) : Type,

T₄(x₁ : T₁, x₂ : T₂ x₁, x₃ : T₃ (x₁, x₂)) : Type,

^^...)

As we have done with natural numbers, we can define an implicit conversion from semi-simplices
to types, yielding their truncated versions Unit, SΔ1, SΔ2, etc. This way we can define a
dependent version of heterogeneous lists and sequences:

data DList<T : SΔd ><n : SΔ>(items : n → T n)

data DSeq<T : SΔd >(head : T Zero ^// Actually,

tail : DSeq<T Next(Zero) { Last ↦ head }>) ^// a codata type

Dependent sequences are also known as very-dependent functions15 on Nat. The construction
of SΔ can be replicated for any inductive type J fibering all generators over their recursive
arguments. Such very-dependent function types can be used to model communication protocols.

7 Reedy types
Reedy categories are allowed to have both injective and projective arrows, and can be represented
by lax matryoshka inductive types, which we will from now on call Reedy types T : яU. In
particular, we can add extenders to SΔ to ensure that functions on Tₙ can be also applied to
Tₙ₊₁. Let us start with an incomplete definition:

data Δ : яType

Zero / Void

Next(s : Δ) / data

Prev(p : |s|) : |Next(s)| p

Last : |Next(s)| s Prev(s)

Zero[n : Nat⟩ (n⁺c Next)(Zero)

Next(s)[n : Nat, f : Fin(n⁺ + (s as ℕ)) → Fin(s as ℕ)⟩ (n⁺c Next)(s)

[n⟩ [n', f'⟩ ↦ [n', f'⟩

[n, f⟩ [n', f'⟩ ↦ [n', { it ∘ f } f'⟩

15Jason J. Hickey. Formal objects in type theory using very dependent types (1996)
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Extenders define type families on a fibered type, so they have to specify action on selectors. In
this way, we will specify intertwining identities between selectors and extenders (i.e. face and
degeneracy maps as they are known for geometric shapes). Here is a complete definition:

data Δ : яType

Zero / Void

^^...TODO: Not just write, but make the stuff typecheck!

data operator asType : Δd

^^...TODO: Not just write, but make the stuff typecheck!

Type families on Δ are the infamous simplicial type families that allow mutual definition of
types and contexts when describing dependently typed theories:

data Ty : (ΣΔ Ctx)d

^^...language-specific

def Ctx : Δ → Type

Zero ↦ Unit

Next(s) ↦ Ty s this(s)

Then we can define terms, telescopes, and substitution:

data Tm : (ΣΣΔ Ctx Ty)d

^^...language-specific

data Tel : (ΣΔ Ctx)d

EmptyTel : Tel Zero

Append<c>(prefix : Tel c, t : Ty c) : Tel (Next(c), {

Next(c) ↦ t

else ↦ c

})

def applyTy<c>(tm : Ty c, args : Tel c) : Ty Zero ()

def applyTm<c, t>(tm : Tm (c, t), args : Tel c) : Tm (Zero, (), applyTy(t, c))

If we postulate the rules of the theory as identites in Ty, we might run into unsolvable coherency
issues. Fortunatelly, computational type theories can be presented bi-directionally, i.e. instead
of Tm we will have a free inductive type Nf : (ΣΣΔ Ctx Ty)d of normal forms satisfying a given
type, and a fibered family of reducible expressions that synthesize their types and normal forms
Rx : (c : Ctx)d ↓ (ty : Ty c, Nf (c, ty)).

The putative Higher Observational Type Theory has additional complexity: it needs higher
dimentional substitutions, requiring a cubical type family of judgement sorts.
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8 Categories as models of a reedy prototype
Let us revisit the category vocabulary, adding an extra extender:

data Cell2 : яType

Ob / Void

Mor / data

Source : |Mor| Ob

Target : |Mor| Ob

Ob [よ⟩ Mor / ff

Just like we defined a monoid prototype above, we can define a prototype for categories as an
indexed quotient-inductive type family:

data CatP : Cell2d

id<o : CatP Ob> : (CatP Mor)(o, o)

(▸)<x, y, z> : (CatP Mor)(x, y) → (CatP Mor)(y, z) → (CatP Mor)(x, z)

unitorL<x, y> : ∀(f : (CatP Mor)(x, y)) f = id ▸ f

unitorR<x, y> : ∀(f : (CatP Mor)(x, y)) f = f ▸ id

associator<f, g, h> : (f ▸ g) ▸ h = f ▸ (g ▸ h)

The dual typeclass is precisely the usual definition of a category:

data Cat<this Ts : Cell2d >(

id<o> : Ts.mor(o, o),

(▸)<x, y, z> : Ts.mor(x, y) → Ts.mor(y, z) → Ts.mor(x, z)

^^... subject to unitality and associativity

)

Yoneda extender induces equivalence between isomorphism and equivalence for objects:

∀<x, y> (a ≃ b) ≃ Σ(f : Ts.mor(x, y)

g : Ts.mor(y, x)) (f ▸ g = id) and (f ▸ g = id)

But more importantly, it imposes functoriality on functions between categories:

f : ∀<Xs Ys : Cat> Xs.Ob → Ys.Ob

g : ∀<Xs Ys : Cat> Xs.Obn → Ys.Ob ^// for any type n

h : ∀<Xs Ys : Cat> Xs.Ob
∗

→ Ys.Ob ^// for any monadic container

Applying these functions to the embeddings o[よ⟩ one obtains their action on morphisms, which
must commute with Cat-structure, i.e. compositions.

This way we can even introduce monoidal (or lax monoidal) structure on categories as follows:

data MonoidalCat<this Ts : Cat>(m : ∀<i> Monoid<Ts i>)

data LaxMonoidalCat<this Ts : Cat>(m : ∀<i> LaxMonoid<Ts i>)

In fact, we can lift any typeclass C<this T> to J-indexed type families by

data (C ↗ J)<this T : Jd >(c : ∀<i> C<T i>)

Exactly as we did for monoids, we can proceed to derive an unbiased definition a lax prototype.
To our understanding, lax categories are precisely the virtual double categories, “the natural
place in which to enrich categories”. Since we now can describe weak ω-categories algebraically,
it is worth studying if categories weakly enriched in ω-categories are ω-categories themselves.
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9 Displayed algebraic structures and parametricity
We already have the Monoid typeclass, so let us define their category. First, we need a notion of
monoid homomorphisms, which can be given by a “function class”:

data MonoidMorphism<X Y : Monoid>(this apply : X → Y, ^^...axioms)

So far we need a type Ob of objects rather than a typeclass, so let us define the category of
small monoids (ones with carriers inside the first universe Type):

object Monoid : Cat<{Ob ↦ Monoid, Mor ↦ MonoidMorphism}>(id, (∘))

The ◻-based approach to polymorphism16 allows automatically deriving categories Monoid⁺ of
Type⁺-sized monoids, Monoid⁺⁺ and so on, and transferring proofs and constructions upwards
this hierarchy. With the display operator ( ᵈ) we can do even better. It turns a typeclass
like Cat into a displayed typeclass, a typeclass of typeclasses. In this way, we can introduce a
companion object making the typeclass of Monoids into a (size-agnostic) displayed category:

object Monoid : Catd <{Ob ↦ Monoid, Mor ↦ MonoidMorphism}>(^^...)

Homomorphisms can be defined uniformly for all algebraic theories. A type class T is called
algebraic if it is a dual for some inductive type TP called its prototype. Given an instance X : T of
an algebraic typeclass, let us consider the typeclass Td <X>. Its instances consist of a type family
indexed by elements of X (a multivalued function on X) and an instance Y : T on its values. In
other words, its instances are all possible promorphisms X ⇸ Y (many-to-many homomorphisms)
on X. Ordinary homomorphisms are the univalent (= many-to-one) promorphisms:

data Hom<X : T>(this pm : Td X, ∀(x) isContr(pm x))

This way we can uniformly derive the category of models for every algebraic theory:

object Monoid : Catd

object Group : Catd

object Ring : Catd

object Cat : (Cat ↗ Cell2)d

The last line requires some explanation: The typeclass Cat itself is a typeclass of families over
Cell2. To obtain the typeclass of such type family classes, we must lift the typeclass Cat to
families over Cell2 (as described in the previous section) and build a displayed type. This
process can be iterated yielding Cat : (Cat ↗ Cell2)d : ((Cat ↗ Cell2)d ↗ Cell2)d : ···

Lifting parametric proofs and constructions upwards such hierarchies can be achieved by
generalizing the operation ↗ to typeclasses of S-indexed families, so unary ◻-parametricity can
be generalized to its S-ary form. In this way, we expect to have a satisfying solution to all size
issues arising in ordinary and higher category theory.

Exactly as type universes Type⁺n , universes of models for algebraic theories are not merely
categories: they come with an inbuilt notion of promorphisms (X ⇸ Y) and distinguished
families of fibrations X ↓ Y and extensions X ↑ Y. Lax and/or dependently sorted algebraic
theories exhibit non-invertible higher morphisms and thus form weak ω-categories. With this
amount of coherent structure, our theory should be capable of formalizing the nLab.17

16
https://akuklev.github.io/polymorphism.pdf

17
http://ncatlab.org
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10 Future work
So far we have only considered dependent type formers valued in ordinary types, and type
families (valued in universes as categories), but it should be possible to introduce broader
dependent type formers in directed universes яU using an approach modelled after “Type Theory
for Synthetic ∞-categories”18 by E. Riehl and M. Shulman.19

Besides Reedy types, higher directed universes яType⁺ and upwards are also populated by large
types equipped with appropriate structure: ordinary universes, universes of algebraic structures,
universes of type families (“presheaf universes”), and conjecturally also sheaves which can be
presented as fibered model-valued families.

Since universes of lax algebraic theories exhibit higher morphisms, ultimately we shall be
pursuing stacks.

18
https://arxiv.org/abs/1705.07442

19
https://rzk-lang.github.io/
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