
◻Parametric Polymorphism for Agnostic Type Theories
Alexander Kuklev 1,2 ‹a@kuklev.com›

1Radboud University Nijmegen, Software Science
2JetBrains Research

Our starting point will be a type theory with a countable hierarchy of universes introduced by
the following infinite family of rules:

Γ ⊢ Type : Type⁺ Γ ⊢ Type⁺ : Type⁺⁺ Γ ⊢ Type⁺⁺ : Type⁺⁺⁺
⋯

Considered together, these rules introduce a countably infinite family of well-typed terms Type,
Type⁺, Type⁺⁺, etc., but they have to be considered together as the type used in each rule is
first introduced by the next rule.

Let us postulate the first universe Type to be ΠΣ-closed and add some basic types to taste:

Void : Type Unit : Type Bool : Type Nat : Type

Γ ⊢ X : Type Γ, x : X ⊢ Y(x) : Type

Γ ⊢ (x : X) × Y(x) : Type

Γ ⊢ X : Type Γ, x : X ⊢ Y(x) : Type

Γ ⊢ ∀(x : X) Y(x) : Type

(We will write X → Y for non-dependent Π-types ∀(_ : X) Y.)

We want a type theory where all closed-form type former definitions F(K : Type⁺) : Type, can be
lifted to the higher universes. The “closed-form” restriction is essential to avoid inconsistencies.
So let’s introduce the S4 necessity ◻-modality mapping types T to sets of their closed-form
inhabitants t : ◻T. Naïvely, we can try the following rules:

◻Г ⊢ x : X

◻Г, Δ ⊢ x : ◻X
(◻Intro)

Г ⊢ x : ◻X

Г ⊢ x : X
(◻Elim)

Here we say that an inhabitant definable in a context only containing closed-form expressions
is a closed-form inhabitant, and that a closed-form inhabitant of X is an inhabitant of X.

Unfortunately, this definition is unsatisfactory in presence of dependent types. To proceed, we
need to make our type theory {0, ω}-graded, that is we will allow marking some variables in
contexts as opaque using zero subscripts above the colon. It will allow introducing parametric
quantifiers ∀<x : X> T(x) (note angle brackets instead of parens):

Γ ⊢ X : Type Γ, x : X ⊢ Y(x) : Type

Γ ⊢ ∀<x : X> Y(x) : Type

Γ ⊢ X : Type Г, x :° X ⊢ y : Y(X)

Г ⊢ { x :° X ↦ Y(X) } : ∀<x : X> Y(x)

But more importantly, it allows adjusting the rules for the ◻-modality to work well with
dependent types. In the introduction rule we allow opaque variables, while in the elimination
rule we state that a closed-form element can only depend on non-closed-form elements opaquely:

◻Г, Δ° ⊢ x : X

◻Г, Δ°, Σ ⊢ x : ◻X
(◻Intro)

Г ⊢ x : ◻X(t)

Г° ⊢ x : X(t)
(◻Elim)

Now let us define the universe-shifting operator (⁺) for all types. Its action on the types will
be defined on a case-by-case basis for all type formers, i.e. coinductively. Types living inside the
first universe Type are constructed without mentioning Type, so the universe-shifting operator
does not affect them. Otherwise universe shifting is applied componentwise:

((x : X) × Y(x))⁺ ↦ (x : X⁺) × (Y(x))⁺

(∀(x : X) Y(x))⁺ ↦ ∀(x : X⁺) × (Y(x))⁺

1

https://orcid.org/0009-0004-1019-4205
a@kuklev.com

Now we can finally introduce an infinite family of rules ensuring that closed-form type formers
work in all universes above their original universe:

Γ ⊢ K : Type⁺ Γ ⊢ F : ◻(K → Type)

Γ ⊢ F : K⁺ → Type⁺

Γ ⊢ K : Type⁺⁺ Γ ⊢ F : ◻(K → Type⁺)

Γ ⊢ F : K⁺ → Type⁺⁺

Γ ⊢ K : Type⁺⁺⁺ Γ ⊢ F : ◻(K → Type⁺⁺)

Γ ⊢ F : K⁺ → Type⁺⁺⁺

⋱

Closed-form type formers such as List<T : Type> : Type and Endo<T : Type> ^:= T → T are
now applicable to types in any universes. It also works for typeclasses1 such as

data Monoid<this M : Type>(unit : M,

compose : M² → M,

^^...axioms)

data Monad<this F : Type → Type>(^// Higher kinded typeclasses work too!

unit<T>(x : T) : F<T>

compose<X, Y>(x : F<X>, y : X → F<Y>) : F<Y>

^^...axioms)

(To deal with typeclasses more conveniently, let us introduce the following shorthand notation:
given a typeclass F : K → U, let ∀<X : F> Y(X) mean ∀<X : K> ∀(X : F<X>) Y(X) where X can
mean both the carrier X : K and the instance X : F<T>, disambiguated by the context.)

Let us now use parametric quantifiers for the cumulativity rules for terms of polymorphic types:

Γ ⊢ K : Type⁺ Γ ⊢ F : ◻(K → Type) Γ ⊢ c : ◻∀<T : K> F(T)

Γ ⊢ c : ∀<T : K⁺> F(T)
⋯

Consider the following polymorphic function:

def id : ∀<T : Type> T → T

x ↦ x

With the rule above, it additionally inhabits Endo<T : Type⁺>, Endo<T : Type⁺⁺>, etc.

Consider the canonical instance of the monoid typeclass and the Cayley Embedding construction:

object Endo<T> : Monoid<Endo<T>>

unit = id<T>

compose(f g : Endo<T>) = { x : T ↦ f(g(x)) }

def cayleyEmbedding : ∀<M : Monoid> MonoidMorphism<M, Endo(M)>

^^...

Definitions for small monoids apply to all monoids regardless of size through cumulativity,
provided they are closed terms and only depend on carrier types parametrically.

The type theory we presented has a straightforward model in M. Shulman’s set theory ZMC/𝕊. We
interpret ◻-modality on types as relativization to small sets 𝕊, and since finite sets of formulas
are reflected in 𝕊, relativized types contain closed terms. Reverse application of the reflection
schema justifies polymorphism rules, while the Ackermann schema justifies cumulativity rules.

1Typeclasses are introduced as records with a marked (by this), possibly higher-kinded, typal parameter, but
turn into a subtype of their marked parameter’s type, e.g. BoolR ^<: Type, so every T : BoolR is both a type and
an instance of BoolR <T>, which does not introduce ambiguities since types and families cannot have fields, while
typeclass instances are records and consist from their fields. See kotlin_typeclasses.pdf for details.

2

https://akuklev.github.io/kotlin/kotlin_typeclasses.pdf

1 Unary parametricity
We have achieved that id ^:= { x ↦ x } inhabits Endo<T> in all universes, but we can also extend
our type theory so we can show that id is the only closed-form inhabitant of ∀<T> Endo<T>

up to equivalence. The ◻-modality together with (ᵈ) operator from Displayed Type Theory
allows ◻-internal parametric reasoning. As opposed to type theories with non-modal internal
parametricity, this approach does not contradict LEM (law of excluded middle) maintaining
the underlying type theory constructively agnostic.

In 1941, Alonzo Church noticed that natural numbers can be represented as polymorphic func-
tions of the type ∀<T> (T → T) → T → T. All other inductive types also have Church encodings,
and the type of id : ∀<T> (T → T) is the Church encoding for the Unit type. To establish that
id is its unique closed-form inhabitant, it is enough to postulate that closed-form inhabitants
of Church encoded inductive datatypes are exhausted by Church encodings.

Every inductive type I : U comes with a dual typeclass IR <T : U>. For natural numbers:

data ℕR <this T : U>(base : T

next : T → T)

Instances of IR define structural recursion for the type I. Church encodings xc : ∀<T : IR > →

T evaluate instances of IR for x:

def 0c = { T :° U, T : ℕR <T> ↦ T.base }

def 1c = { T :° U, T : ℕR <T> ↦ T.next T.base }

def 2c = { T :° U, T : ℕR <T> ↦ T.next (T.next T.base) }

^^...

Both the original and the Church-encoded inductive type form an instance of the typeclass IR :

object ℕ : ℕR

def base = 0

def next = (⁺)

object ℕc : ℕR

def base = 0c

def next = (⁺)c

To postulate that the instance ℕ is the initial model, we need to introduce the induction rule
(that is, the dependent elimination rule) for ℕ. Ensuring that closed-form inhabitants of ℕc are
exhausted by Church encodings of ℕ elements is essentially the same rule, but for the type ◻ℕc
instead of ℕ. To formulate both rules uniformly for all inductive types, let us apply the (ᵈ)
operator introduced in Displayed Type Theory to the typeclass IR :

data ℕR ᵈ<T : U>(M : ℕR <T>)<this Ts : T → U>(base : T

next : T → T)

Now we can formulate induction and unary parametricity:

I-ind(n : I) : ∀<M : IR ᵈ I> → (M n)

I-par(n : ◻Ic) : ∀(R : IR ᵈ Ic) → (R n)

We can use Unit-par to derive that id is the unique closed-form inhabitant of ∀<T> (T → T):

data UnitR <this T>(point : T) ^// Dual of the `Unit` type are pointed types

object Helper : UnitR ᵈ<Unitc > { id : Unitc ↦ (id ≃ { x ↦ x }) }

def point = refl

theorem ∀(id : ◻∀<T : U> T → T) id ≃ { x ↦ x }

id ↦ Unit-par id Helper

3

Ideas we present in “Reedy Types and Dependent Type Families”2 indicate a direction beyond
unary parametricity towards S-shaped parametricity for any effectively presentable Reedy
category S. In addition to well-known applications of binary (Wadler’s “Theorems for Free”) and
n-ary parametricity, it enables extending polymorphism and cumulativity beyond upwards-only

allowing to generalize from U to presheaf universes J → U and (J → U⁺) → U.

2 Classical reasoning and functional logic programming
In the companion paper3 we argue that it is also possible to introduce a modality dual to
◻, namely the S4-possibility modality mapping each type T to the spectrum ◇T of its formal
inhabitants, i.e., inhabitants that can “non-constructively shown to exist” using choice operator
(as in Lean4) and double negation elimination as its special case. This modality allows classical
(non-constructive) reasoning within ◇-fragment without compromising computational properties
of the underlying type theory such as canonicity, normalization and decidability of type checking,
as well as its compatibility with univalence. These desirable properties remain intact even if
impermeability of the ◇-fragment is violated by computational Markov Principle (CMP) that
allows evaluating Turing-complete computations given a closed-form classical proof of their
non-divergence:

c : Computation<T> nonDivergence : ◻◇(c ≠ ⊥)

eval(c, nonDivergence) : T

We can easily show that the type M = W(T : U) ◇T of iterative classical sets satisfies all axioms
of the classical set theory ZFC, and the reasoning under ◇-modality satisfies Hilbert axioms of
classical logic, thus our proposed type theory contains a model of ZFC.

3 Relation to Shulman’s strong Feferman set theory ZMC/𝕊

For any fixed finite collection of type formers Fₙ : (Kₙ → U) → U where Kₙ : U⁺ induction
recursion allows constructing a universe V : U containing codes for all types T : U that can be
generated using type formers Fₙ. Let us assume that all our universes Type : Type⁺ : Type⁺⁺

: Type⁺⁺⁺ : ··· contain all such inductive-recursive types and additionally that there is an
impredicative universe Prop : Type of propositions.

Resulting type theory provides the same level of comfort regarding formalization of category
theory as the strong Feferman set theory ZMC/𝕊 introduced by M. Shulman.4 Moreover, it is,
presumably, a conservative extension thereof.

There are two ways to interpret ZFC-sets into the type theory:

• The type of small iterative classical sets M ^:= W(T : Type) ◇T is a model of ZFC.
• Its impredicative encoding inside Prop: M' ≙ W(P : Prop) ◇P is also a model of ZFC.

Let us translate the language of ZMC/𝕊 into the type theory interpreting 𝕊-bounded quantification
with M and unbounded quantification with M'. So far, we have manually checked that this
translation satisfies all axioms of ZMC/𝕊. At the same time, it seems possible to exhibit a
construction that yields ZMC/𝕊-valued models for finite fragments of this type theory built in
such a way that the type-theoretic translation of the set-theoretic formula φ is only inhabited if
the formula φ holds in the model.

Conservativity implies equiconsistency, so it should be possible to adapt the consistency-
dependent canonicity proof for CCobs by L. Pujet and N. Tabareau5 to show desirable computa-
tional properties claimed above.

2
https://akuklev.github.io/reedy.pdf

3
https://akuklev.github.io/verse

4
https://arxiv.org/pdf/0810.1279

5
https://dl.acm.org/doi/10.1145/3498693

4

https://akuklev.github.io/reedy.pdf
https://akuklev.github.io/verse
https://arxiv.org/pdf/0810.1279
https://dl.acm.org/doi/10.1145/3498693

4 Relation to Stratified Type Theory
In 2024, J. Chan and S. Weirich devised a stratified type theory StraTT,6 a logically consistent
type theory that allows speaking of the all-encompassing universe Type : Type by stratifying
typing judgments. This approach parallels New Foundations, a non-well-founded set theory
developed by W. V. Quine in 1937, the only successful foundational theory able to speak of
all-encompassing self-containing universal objects, which was recently shown to be consistent
using Lean proof assistant.7 Stratified type theory can probably be extended to admit the
ω-category of all ω-categories, and used to explore the boundaries of what can be said about such
an object. We think it is crucial to understand the relation between StraTT and our approach.

6
https://arxiv.org/pdf/2309.12164

7
https://arxiv.org/abs/1503.01406

5

https://arxiv.org/pdf/2309.12164
https://arxiv.org/abs/1503.01406

	Unary parametricity
	Classical reasoning and functional logic programming
	Relation to Shulman’s strong Feferman set theory ZMC/Symbola"1D54A
	Relation to Stratified Type Theory

