
Academic Kotlin
Alexander Kuklev 1,2 ‹a@kuklev.com›

1Radboud University Nijmegen, Software Science
2JetBrains Research

Modified Literate Kotlin can be used for computer science papers and in mathematics as a
language for constructions and proofs. These applications require dedicated extensions, we’ll
outline in this memo. High abuse potential makes some of them undesirable for a general-purpose
programming language, so we propose introducing a separate dialect: Academic Kotlin.

1 Concise declarations
In academic applications, the signatures of functions and polymorphic types get quite convo-
luted. For reasonable readability, it is essential to keep them as short as possible. Significant
improvements can be achieved with space-separated lists of variables sharing the same type

def plus(x y : Int) : Int

and name-based default type conventions:

reserve m : Int, prefix n : Int, suffix count : Int

With this declaration, all identifiers reading m (and also indexed ones, like m2), and multipart
identifiers with the first part n or the last part count (e.g. nUsers and pointCount) are assumed
Int by default. Dependent default type conventions1 facilitate concise polymorphic signatures.

2 Concise notations and detailed descriptions
Mathematics and academic computer science require short variable names and concise notation
for formulas, but short names need descriptions, and fancy operators need pronounceable names
and input methods. We propose a dual naming scheme, with pronounceable alphanumeric default
identifiers and descriptions/concise notations (which may include non-ASCII characters and
introduce custom symbolic operators) as optional alternatives, written in backticks afterwards.

val n `element count` = ^^... # field/variable descriptions

class List<T `element type`> # parameter/argument descriptions

enum class Boolean `B` # unicode identifiers

def not(b : `B) `¬b` # prefix operators

def factorial(n : ℕ) `n!` # postfix operators

data class Pair<out X, out Y> `X × Y` # infix operators

def floor(x : Float) `⌊x⌋` # closed operators with parameters

def List<T>.get(idx : ℕ) `this[idx]` # postfix operators with parameters

Note that operators can have parameters, e.g. the indexed access operator arr[i] is a postfix
operator with parameter ([_]) . In mathematics, many binary operators, such as tensor and
semidirect products, may have optional parameters represented as subscripts or superscripts.
Parsing techniques developed for the Agda programming language allow to handle such operators.

To refer to operators directly, we propose the following notation:

^::(-) for ^::minus ^::(-) for ^::unaryMinu ^::(--) for ^::dec

Spaces on the right or left indicate prefix and postfix operators, respectively.
1http://agda.readthedocs.io/en/v2.7.0/language/generalization-of-declared-variables.html

1

https://orcid.org/0009-0004-1019-4205
a@kuklev.com
http://agda.readthedocs.io/en/v2.7.0/language/generalization-of-declared-variables.html

3 Operator tightness
By default, operators should have unspecified precedence, so expressions like -n! should be
treated as syntax errors due to the ambiguity (-n)! vs -(n!). Expressions a ∘ b ∘ c for
binary infix operators should also be rejected due to the ambiguity (a ∘ b) ∘ c vs a ∘ (b ∘ c).
However, we propose to support vararg infix operators plus(vararg x : Float) `+` : Float,
in which case chains a + ··· + c are interpreted as plus(a,^^..., c).

We propose to specify the tightness of operators by annotations extending the OperatorCategory

interface. Unlike numbers, operator categories are merely required to form a directed acyclic
graph and do not have to be pairwise comparable, which is a good thing: non-obvious expressions
should not be given arbitrary meanings. Furthermore, operator categories can specify custom
interpretations for chains of operators belonging to that category: The category @EqRel of
comparison operators resolves their chains a < b ≤ c into conjunctions (a < b and b ≤ c).

Infix operators can have different right and left tightness. Minus always binds tighter on the
right, so that a - b - c would resolve to (a - b) - c. It can be also defined to bind tighter
than (+) on the right, but not on the left, so a + b - c + d would parse as ((a + b) - c) + d.

By combining custom operator categories and operators with parameters, we can even accom-
modate the infamous example of operator complexity, the METAPOST path notation:

draw a -- b -- c --cycle # A triangle, (--)-lines are straight

draw a ~~ b ~~ c ~~cycle # A circle through abc, (~~)-lines are curved

draw a ~~ b ~~ c ~- d -- e --cycle # (~-) connect smoothly only on the left side

draw a ~~ b ~~[tension: 1.5, 1]~~ c ~~ d

draw a [curl: k]~~ c ~~[curl: k] d

draw a ~~ b [up]~~ c [left]~~ d ~~ e.

draw (0,0) ~~[controls: (26.8,-1.8), (51.4,14.6)]~~

(60,40) ~~[controls: (67.1,61.0), (59.8,84.6)]~~ (30,50)

4 Companion objects and type classes
Following a ridiculous tradition popularized by Smalltalk in the 70s, Kotlin interprets operators
as methods of their left operands. Mathematically, operators should be attributed to the
companion object of their operand(s): 2 + 3 should mean Int.plus(2, 3) rather than 2.plus(3).

Currently, interfaces can require unknown types to have desired operators:

interface IndexedContainer {

operator get(index: Int)

}

With proper attribution, it’s the companion objects that should implement respective interfaces:

class Int

^^...

companion object : Numeric<Int>

operator plus(vararg xs : Int) : Int

^^...

operator times(vararg xs : Int) : Int

^^...

class List<T>

^^...

companion object : Functorial<List>

def <X, Y> List<X>.map(f : (X)-> Y) : List<Y>

2

Such parametric interfaces for companion objects are known as type classes and are typically
used to represent mathematical structures:

structure Monoid<@Carrier T>(val compose : (vararg xs : T)-> T)

val unit = compose() # Unit is the nullary composition

contracts {

unit ‹compose› x = x

x ‹compose› unit = x

x ‹compose› y ‹compose› z = x ‹compose› (y ‹compose› z)

compose(x, *xs) = x ‹compose› compose(*xs)

}

With some syntactic sugar, type classes can be used for concise polymorphic function definitions:

def <T : Numeric> double(x : T) ⟩ def <T> double(companion T : Numeric<T>, x : T)

x + x ⟩ x + x

Here, the function double implicitly gets an eponymous companion object for the type T,
which provides the operator T.plus for values x : T. In addition, we propose to support a
Fortress-inspired syntax to (re)name the operations provided by type classes via unification:

def <T : Monoid(^::(∘))> square(x : T) ⟩ def <T : Monoid> square(x : T)

x ∘ x ⟩ T.compose(x, x)

In the List example above, the companion object extends Functorial<List>. The parameter of
this type class is not a type, but a type former, i.e. type classes are in general higher kinded:
Functorial<T : * → ^*>. We propose modeling support for higher kinds, type class inheritance
and nominal subtyping after the Arend2 language, with extensions inspired by Fortress.

Type class subtyping should soundly represent hierarchies of algebraic structures, which leads
to quite intricate cases at times. Let us illustrate the “Fortress-inspired extensions” with the
example of rigs, which are challenging for the following reasons:

Diamond problem Rings and rigs (rings without negation) extend monoids in two ways:
both form a monoid with respect to both addition (+) and multiplication (·).

Circularity We can define the class of modules over a given rig, and define (unital associative)
algebras over a given rig as a monoidal object in modules over that ring. Ultimately, we
observe that a rig can be seen as an algebra over ℕ (ring as an algebra over ℤ, abelian
group as a module over ℤ, etc), which should be ideally reflected by subtyping.

Fortress resolves the diamond problem with renaming inheritance and allows circularity by
allowing nominal (bi-)convertibility to be established retroactively:

structure Rig<@Carrier T> <: Monoid<T>(^::(·)), AbMonoid<T>(^::(+))

^^...

structure Module<R : Rig><@Carrier T> <: AbMonoid<T>(^::(+))

^^...

typealias Algebra<R : Rig> = Monoid(^::(·)) within Module<R>

establish

Module<ℕ> <:> AbMonoid(^::(+))

Rig <:> Monoid(^::(·)) within Module<ℕ>

Algebra<ℕ> <:> Rig

2https://arend-lang.github.io/

3

https://arend-lang.github.io/

5 Derived instances
Whenever the parameter type T comes with an order, the type of lists List<T> has a natural
lexicographic ordering. It’s a typical case of “derived type class instance”. We propose declaring
it as an additional companion object, e.g.

companion object List<T : Ord> : Ord

^^...

6 Geometric notation
For the conventional representation of geometric constructions and proofs in a Kotlin-based
language, we need syntactic sugar that stands apart from everything else. We propose to use
the import SegmentsNotation flag to allow delimiterless strings of point labels as names for
segments, angles, and polygons. That is, strings of consecutive uppercase letters, possibly with
indices or apostrophes, such as ABC, ABCA', and X1X2 will be interpreted as Segments(A,B,C),
Segments(A,B,C,A'), and Segments(X1,X2), respectively. Backticks can be used to access multi-
letter uppercase identifiers: `ABC`.

7 Conclusion and outlook
Academic Kotlin addresses the unique needs of mathematics and computer science papers.
TODO

4

	Concise declarations
	Concise notations and detailed descriptions
	Operator tightness
	Companion objects and type classes
	Derived instances
	Geometric notation
	Conclusion and outlook

