
Typeclasses for Kotlin
Alexander Kuklev 1,2 ‹a@kuklev.com›

1Radboud University Nijmegen, Software Science
2JetBrains Research

1 Interfaces and typeclasses
In object-oriented programming, interfaces serve as contracts that define a set of member
functions that a class must implement. It works well if we only need functions that require only
one argument of the said type. Whenever we need a binary operator on a type, we do this:

public interface Comparable<in T> {

public operator fun compareTo(other : T) : Ternary

}

class String : Comparable<String> { … }

We use somewhat problematic recursive inheritance for mimicking self types and represent
highly symmetric binary operators (such as x + y and x ^== y) asymmetrically as methods of
the left operand. Moreover, there is no way to express that List<T> implements Comparable

whenever T does or to abstract the map function for collections. Typeclasses solve these issues:

data class Comparable<this T>(val compare : (T, T)-> Ternary)

class String {

…

companion object : Comparable { x, y -> … }

}

Here Comparable is not an ancestor of String itself but of its companion object. Instead of ugly
a.compareTo(b), we have a nice symmetric String.compare(a, b). We use the this to mark
the “self type” parameter of Comparable to be able to write

fun <T : Comparable> List<T>.sorted() : List<T>

as if it were an ancestor of the type T itself rather than a requirement for T to have a
companion object (also called T) extending Comparable<T>. Such definitions are called structure-
polymorphic.

Using this machinery we can express alternative instances and “conditional inheritance”:

fun <T : Comparable> desc : Comparable<T> { x, y -> T.compare(y, x) }

class List<T>

…

companion object List<T : Comparable>: Comparable { x, y -> … }

}

listOf(1, 2, 3).sorted<desc>

With higher-kinded parameters we can also require collections to have the map function:

class Functorial<self F : out * -> *> {

fun <T, R> F<T>.map(transform : (T)-> R) : F<R>

contracts { … }

}

class List<T> : Functorial { … }

Kotlin’s approach to operators has to be adjusted accordingly, so operators can be placed inside
companion objects, e.g. Int.plus(a, b) instead of a.plus(b).

1

https://orcid.org/0009-0004-1019-4205
a@kuklev.com


2 Call-site field renaming and fake type members
Type classes are perfectly suited to express mathematical structures, e.g.

data class Monoid<self M>(infix val compose : (vararg xs : M)-> M) {

val unit = compose() ^// Unit is the nullary composition

contracts {

compose(x) = x

compose(*(xs + ys)) = compose(*xs) compose compose(*ys)

}

}

For better syntactical support of mathematical structures, we can allow renaming their fields
on the call site:

fun <M : Monoid(^::plus)> foo(m : M) = m + m

fun <M : Monoid(^::times)> bar(m : M) = m * m

Some mathematical structures involve more than one type, in which case the fake type member
notation is highly convenient:

fun <C : Category> baz(x : C.Ob, f : C.Mor) ^// same as:

fun <Ob, Mor : MorIn<Ob>> baz(C : Category<Ob, Mor>, x : Ob, f : Mor)

3 Using this as field a modifier
Kotlin supports implementing interfaces by delegation class Foo : Bar by baz. In some cases,
we want to implement an interface Bar by delegating to constructor parameter val baz : Bar.

Similar to its usage in type parameters, we can enable this as a field modifier for this purpose:

data class RetractibleFunction<X, Y>(this val invoke : (X)-> Y,

val revoke : (Y)-> X)) {

contracts {

{ revoke(invoke(it)) } == { it }

}

}

This way, RetractibleFunction<X, Y> implements the interface (X)^-> Y by delegating to invoke.

4 Conclusion and outlook
We should assess and thoroughly discuss with Ross Tate how typeclasses compare to shape
interfaces, how they interact with type inference/outference and whether they can introduce
type checking undecideabiliy or any other kind of problems.

2


	Interfaces and typeclasses
	Call-site field renaming and fake type members
	Using this as field a modifier
	Conclusion and outlook

