
Purity, constants, and explicit effects
Alexander Kuklev 1,2 ‹a@kuklev.com›

1Radboud University Nijmegen, Software Science
2JetBrains Research

In many cases, high-order functions such as sortWith(comparator) only have meaningful behavior
if their arguments are self-contained functions that are safe to re-execute and produce output
that only depends on their arguments, so-called pure1 functions. Pure functions are inseparable
from pure datatypes, the types of inherently immutable self-contained values.

Type-level control over the purity of functions is essential to statically prevent nonsensical
behavior and dangerous vulnerabilities. Control over the purity of type parameters is essential
for precise signatures in the interfaces of remote services and distributed frameworks, as well as
for concurrent containers, conflict-free replicated datatypes, and staged actors. As we’ll show,
pure functions and datatypes also enable a more flexible approach to compile-time constants.

1 Pure data
Pure datatypes are primitive datatypes (Boolean, Int, Float, etc.), enums, strings, pure functions,
immutable arrays of pure data, and (final or sealed) classes and objects in which all fields are
immutable and pure, and all methods are pure functions. We propose introducing a modifier
keyword pure for type parameters (to require purity) and in class and interface declarations (to
assert purity for them and their descendants). Pure datatypes include algebraic datatypes:

pure sealed class LinkedList<pure T> {

pure data class NonEmptyLinkedList<pure T>(val head : T,

val tail : List<T>) : List<T>

pure object EmptyLinkedList : List<Any?>()

}

2 Pure functions
We propose introducing the pure modifier for functions and function types to forbid them to
access any external non-pure methods and objects of not-pure datatype, including global ones
like println and Runtime. Now the sort function can require the comparator to be pure:

fun <T> Array<out T>.sortWith(comparator : pure Comparator<in T>)

It is often desirable to allow some exceptions, e.g. we can allow using println and the Logger:

fun <T> Array<out T>.sortWith(comparator : pure(Logger, ^::println) Comparator<in T>)

By combining pure and context, we can recover checked exceptions (explicit algebraic effects):

pure(Handler<IOException>) fun myFunction() { … }

Semantics of the pure(exceptions) can be generalized beyond function types as described in
Scoped Capabilities for Polymorphic Effects (arXiv:2207.03402) by Martin Odersky et al.

3 Constants
Constant properties must be allowed to have pure types, not only strings and values of primitive
datatypes, as it is currently mandated in Kotlin. Their values should be allowed to contain not
only literals and other constants, but also pure(CompileTime)-functions applied to literals and
constants, where CompileTime provides access to the build environment and resource files:

const val APP_ENV = CompileTime.getenv("APP_ENV") ^?: "DEV"

const val DB_SCHEMA = DbSchema("jdbc:sqlite:./resources/prototypeDb")

1We allow runtime exceptions in pure functions.

1

https://orcid.org/0009-0004-1019-4205
a@kuklev.com
https://arxiv.org/abs/2207.03402

	Pure data
	Pure functions
	Constants

