
Bound references, modal objects, polyphonic coroutines:
A structured approach to resource management

Alexander Kuklev 1,2 ‹a@kuklev.com›
1Radboud University Nijmegen, Software Science

2JetBrains Research

Kotlin relies on scope-based resource management but lacks mechanisms to prevent leaking,
guarantee lifecycle safety, and rule out conflicting actions statically. We devise a mechanism
addressing these issues in a manner compatible with and inspired by structured concurrency.
Our approach subsumes Rust’s borrowing and is closely related to Capture Checking in Scala
and OxCaml, but lays more focus on shifting the burden from library users to library developers.

1 Introduction
We propose an extension to the Kotlin type system and flow-sensitive typing mechanism
providing static control over aliasing, resource lifecycles, synchronization, and communication:

• bound references that cannot leak from their host scope, which open the way for
• modal methods, the statically checked counterpart of Java’s synchronized methods, and
• modes (= typestates) such as File.Open to keep track of object lifecycles at compile time;
• polyphonic structured concurrency for synchronization and simultaneous initialization.

Example 1. Well-scoped resource acquisition (writable reference locked inside)

var rogueWriter: File.Writable?

file.open {

file.write("Hello!")

rogueWriter = file ^// Error: `file : File.Writable` is confined inside open@

}

Example 2. Mutual exclusion of conflicting actions using modal methods

modal class Buffer {

fun append(item: Byte) { … }

modal fun clear() { … }

using fun iterate(block: (&Iterator)-> Unit) { … }

}

buf.iterate { iterator ->

buf.append(0xFE) ^// This is OK

buf.clear() ^// Error: Modal `buf.clear()` can't be invoked while

} ^// `buf` is borrowed by the modal `buf.iterate()`

Example 3. Staged builders (illustrating lifecycle safety for a custom lifecycle)

class Html : Tag("html") with AwaitsHead {

modal! extension AwaitsHead { ^// Html.AwaitsHead

break continue@AwaitsBody ^// │

fun head(head: once Head.()-> Unit) = initTag(Head(), head) ^// │ head { ^^... }

} ^// ↓

modal! extension AwaitsBody { ^// Html.AwaitsBody

break ^// │

fun body(body: once Body.()-> Unit) = initTag(Body(), body) ^// │ body { ^^... }

} ^// ↓

} ^// Html

fun html(block: once Html.AwaitsHead.()-> Unit) = Html().apply(block)

1

https://orcid.org/0009-0004-1019-4205
a@kuklev.com


2 Bound parameters and object-bound types
Higher-order functions f(block: (X)^-> Y): Z typically only use their parameter function block()

inside without ever leaking it outside. Presently, it can be specified by the CallsInPlace contract,
but we think this property must be an integral part of the signature so we can know if block is
allowed to perform non-local jumps and access local variables, etc. Besides, it greatly improves
the behavioural predictability of high-order functions. We propose the following notation:

fun foo(block: bound (X)-> Y)

CallsInPlace also allows restricting invocation multiplicity, which can be written like this:

fun foo(block: once (X)-> Y) ^// exactly once

fun foo(block: once? (X)-> Y) ^// at most once

fun foo(block: once+ (X)-> Y) ^// at least once

Elsewhere,1 we also propose the modifier

fun foo(block: pure (X)-> Y)

for functions that do not access anything non-pure at all, so their invocation multiplicity must
play no role whatsoever. A typical example would be sortWith(c: pure Comparator<T>).

There is one essential case where we need more flexibility, namely CoroutineScope.launch:

interface CoroutineScope {

^^...

fun launch(block: bound(this) suspend ()-> Unit): Job

}

Here, block is not bound inside launch itself but rather inside the surrounding coroutine scope.

Knowing if a parameter leaks the receiving scope is crucial not only for parameters block :

(X)^-> Y of function types. In Kotlin, all objects (that is, values of non-primitive types) are
passed by reference. In the majority of cases, reasoning about programs relies on the assumption
that these references never leak beyond the appropriate scope.

Let us make it explicit by allowing bound for parameters of any non-primitive types, and also
introduce a parametrized bound:

fun foo(f: bound File)

fun bar(f: File): bound(f) FileOutputStream

By allowing bound in vals we can introduce local variables of non-primitive types:

fun f() {

val user: bound MutableUserData

}

Bound parameters are so pervasive that the notation f(x: bound OutputStream) would bloat sig-
natures if used for every bound parameter, so we propose a shorter notation f(x: &OutputStream)

unless used with function types or parameters:

fun <T, R> T.use(block: once (&T)-> R): R

fun <R> coroutineScope(block: once &CoroutineScope.()-> R): R

Bound parameters are only allowed to be captured inside objects and function literals which
are themselves of bound types and cannot outlive the scope the parameters are bound inside.
When bound parameters are passed on to other functions, the compiler must perform escape
analysis (already part of Kotlin/Native compiler) to ensure they do not escape.2

1https://akuklev.github.io/kotlin/kotlin_purity.pdf
2No analysis needed, if receiving parameters are explicitly annotated bound, but limiting to this case only

would ruin backward compatibility and interoperability.

2

https://akuklev.github.io/kotlin/kotlin_purity.pdf


Object-bound parameters are crucial for structured concurrency:

file.printWriter().use {

coroutineScope {

for (i in 1..99) launch {

delay(Random.nextInt(0, 100))

it.println("${i.th} asynchronous bottle of beer")

}

}

it.println("No more bottles of beer!")

}

Here, we acquire a PrintWriter, launch 99 jobs populating it by "${i.th} asynchronous bottle

of beer" after a random delay, and add "No more bottles of beer!" when they’re all done.
The function literal where it.println(…) is invoked is not a simple bound parameter, but
one bound to the enclosing coroutineScope. The invocation is still allowed because the
coroutineScope is itself bound inside the scope where it is bound.

Object-bound return types allow capturing arguments inside freshly created objects:

file.use { f ->

val out = f.outputStream()

}

Object-binding of types must be allowed in inheritance lists as well. Let us consider the case
that shows up in frameworks like JPA/Hibernate (courtesy of Tunahan Pınar), where operations
are run within a transaction, which manages a temporary database session (EntityManager):

fun <R> transaction(block: once (&EntityManager)-> R): R

A bug occurs when an object with lazy-loaded fields, which depends on this live session, is
returned from the transaction scope. Any later attempt to access the lazy data will fail because
the session has been closed, causing a LazyInitializationException. We still want to be able
to return such an object, yet stripped of lazily loaded properties. We can do this as follows.
We can have a universal class for non-lazy fields and an interface for lazy-loaded ones:

class BaseEntity<T>(val id: Long) { … }

interface User : DbEntity{

val id: Long

@OneToMany(mappedBy = User^::class)

val posts: List<Post>

}

EntityManager members that retrieve database entities would not generate their proxy objects:

return object : BaseEntity<User>(id), bound(this) User {

val posts: ProxyList<Post> by em.column("posts", id)

}

Let us consider the following piece of code:

val user = DatabaseManager.transaction { em ->

val user = em.find<User>(1L)

println(user.posts.size) ^// OK!

return user ^// Upcast to the nearest non-bound superclass `BaseEntity<User>`

}

println(user.posts.size) ^// <- Property .posts not found!

^// — what used to be a runtime exception is now being caught already by the IDE.

println(user.id) ^// Still OK!

3



3 Modal objects
Kotlin type system, as it stands, does not reflect the fact that object members may become
unavailable after certain actions, or for the duration of certain actions:

• Closeable resources cannot be accessed after being closed;
• Closeable resources cannot be closed while being used;
• Mutable collections cannot be structurally modified while being iterated.

To enforce these constraints, let us introduce modal methods: methods that are not allowed
to be invoked while their host object is being “used by a third party”. We propose using the
break modifier for modal methods that finalize their host object, and the modal modifier for
methods that lock their host object for the duration of their invocation. Classes with modal
methods will also be declared modal. If they have any finalizing methods, it has to be declared
if finalization is mandatory (modal!) or optional (modal?):

modal? class ProtectedStore<T> {

operator fun get(index: Int): T { … }

modal operator fun set(index: Int, value: T) { … }

break fun close() { … }

}

Whenever pass a modal object as a bound parameter, no modal methods can be called as long
as the bound reference exists:

val store = ProtectedStore<String>()

store[1] = "Hello"

store.use { store ->

println(store[1]) ^// OK

coroutineScope {

launch {println(store[1])} ^// Also OK

}

store[2] = "World" ^// Forbidden!

store.close() ^// Also forbidden!

}

store[2] = "World" ^// OK!

store.close() ^// OK!

println(store[1]) ^// Store has been closed

If M is a modal type, we will treat passing parameters foo(obj : M) very differently from the
case of a non-modal type: as borrowing. As opposed to the case of bar(obj : &M), foo will be
allowed to call modal methods of obj and even required to finalize it if M is a modal type with
mandatory finalization. Borrowed parameters can be reborrowed to some other functions or
objects (see Borrowing by Modal Objects below) or temporarily passed on as bound parameters.
Borrowed parameters are not allowed to be captured at all, unless bound first.

Optionally, finalizable objects must be cast manually after being borrowed and returned:

foo(store)

when(f) {

is ProtectedStore -> ^// store was not consumed by foo

else -> ^// f was consumed by foo

}

There is a third way to pass a modal object as a parameter: we can upcast them to a non-modal
supertype. If T is a non-modal supertype of M, foo(x : T) receives a usual shared reference to T,
which cannot be used to invoke any modal or finalizing methods of x. References of non-modal
types x: T should never be allowed to be cast to modal types M, except in atomic guarded
invocations (r as M).foo() and (r as? M)^?.foo().

4



At-most-once and exactly-once functions can be defined in terms of modal objects:

modal! fun interface ExactlyOnceFunction<X, Y> {

break fun invoke(x: X): Y ^// must be invoked exactly once

}

modal? fun interface OnceOrLessFunction<X, Y> {

break fun invoke(x: X): Y ^// can be invoked at most once

}

Using modal methods, we can introduce mutable objects with the same usage policies as in
Rust. This use case is so ubiquitous we want to introduce a special notation:

modal data class MutableAddress(var street: String, var city: String)

^// Desugars to

modal interface MutableAddress {

var street: String

var city: String

companion object {

fun invoke(val initStreet, val initCity) = object : MutableAddress {

override var street = initStreet

modal set(value) { field = value }

override var city = initCity

modal set(value) { field = value }

}

}

}

Now if we use MutableAddress as a type for a local val, it is automatically a local variable (never
leaks the scope, can be garbage-collected as soon as the function returns). Mutable/read-only
references in Rust exactly match the semantics of our borrowed/bound references, respectively.

One can even go further and extend the definition of normal data classes to automatically
generate a modal, mutable variant and a deep copy() method:

data class User(val name: String, val posts: List<Posts>)

^// Desugars to

class User(val name: String, val posts: List<Post>) {

modal data class Mutable(var name: String, val posts: List.Mutable<Post.Mutable>)

fun copy(block: Mutable.()-> Unit) : User { … }

^^...

}

We propose introducing a new modifier keyword using to mark receiver (this) as a bound
parameter. Let us illustrate the usage on the example of the buffer, which can be grown but
not cleared while being iterated:

modal class Buffer {

fun append(item: Byte) { … }

modal fun clear() { … }

using fun iterate(block: (&Iterator)-> Unit) { … }

}

For the duration of a modal method, the original reference is shadowed by a bound reference:

buf.iterate {

buf.append(0xFE) ^// inside, `buf` is a bound reference

buf.clear() ^// Forbidden: Bound reference cannot be used to invoke modal methods

}

5



We also propose using the using keyword for indentation-sparing syntax from C#:

using file.open

using val connection = withConnection

restOfTheBlock

^// Desugars to

file.open {

withConnection { connection ->

restOfTheBlock

}

}

4 Modes
To represent objects with a complex lifecycle, we propose borrowing (pun intended) yet another
mechanism from Scala, namely the extension classes, described in https://docs.scala-lang.

org/tour/self-types.html. Kotlin-style semantics of extension classes could be easily described
if inheritance by delegation were available not only for interfaces but also for classes:

extension Parent.Mode(…) { … } --> class Mode(p: Parent, …) : Parent by p { … }

Extensions can be declared inside the class they extend, in which case the Parent. prefix is
omitted. They can also be nested. Extensions are used to refine objects (that is, add and
override members) after they have been constructed. Extensions can be constructed using
with-clauses: Parent(…) with Mode. We’ll be using extensions to introduce method modifiers
continue@Mode, break@Mode,3 and using@Mode. It will be crucial to allow overriding modal
methods by non-modal ones in extensions.

Methods with continue@Mode modifier substitute the host reference by its Mode-extension.
Delegation by omission is allowed as well:

modal! fun interface AtLeastOnceFunction<X, Y> { ^// Shorthand: once+ (X)-> Y

continue@Unlocked fun invoke(x : X) : Y ^// must be invoked at least once

extension Unlocked : Function<X, Y> {

fun invoke(x : X) : Y

}

}

Methods with using@Mode temporarily substitute the host reference by a bound reference to
the Mode-extension:

class File {

using@Open fun <R> open(block: once ()-> R)

}

Since extensions can be nested, we also need qualified break@Mode. Unqualified break finalizes
the outermost modal parent.

Both break and using can be combined with continue@Mode allowing arbitrary type-level state
automata. For an example, let us consider an HTML builder.4 It provides an embedded
type-safe DSL for constructing HTML:

val h = html {

head { ^^... }

body { ^^... }

}

3The parallels to ordinary break and continue become evident when introducing type-safe actor model.
4If you are unfamiliar with this example, please consult https://kotlinlang.org/docs/type-safe-builders.html

6

https://docs.scala-lang.org/tour/self-types.html
https://docs.scala-lang.org/tour/self-types.html
https://kotlinlang.org/docs/type-safe-builders.html


To require exactly one head and exactly one body after it, we’ll need a staged builder:

class Html : Tag("html") with AwaitsHead {

modal! extension AwaitsHead { ^// Html.AwaitsHead

break continue@AwaitsBody ^// │

fun head(head : once Head.()-> Unit) = initTag(Head(), head) ^// │ head { ^^... }

} ^// ↓

modal! extension AwaitsBody { ^// Html.AwaitsBody

break ^// │

fun body(body : once Body.()-> Unit) = initTag(Body(), body) ^// │ body { ^^... }

} ^// ↓

} ^// Html

Here we declare a staged class Html that extends Tag("html") and has two additional modes
AwaitsHead and AwaitsBody with methods head() and body() respectively. Both methods are
finalizing methods, but head() additionally continues to the AwaitsBody, while body() leaves
the bare non-modal Html object which provides members inherited from Tag. The initial mode
of this object is specified using a with-clause borrowed from Scala.

Finally, we want to mention that non-abstract class Parent with Mode is allowed to have
abstract members as long as they are implemented by Mode. Also note that if the extension
Mode has constructor arguments and/or abstract methods, continue@Mode functions, modal@Mode
and the constructor of class Parent with Mode must contain an init Mode(args) {methods}

block providing those arguments and/or methods. functions initialize NextMode in their finally

{ … } block. This is also where using@Mode functions have/can to finalize Mode if it is modal! or
modal? respectively.

5 Polyphonic structured concurrency
Presently, resources have to be initialized and finalized sequentially even if they are independent:

withA { a ->

withB { b ->

^^...

}

}

In many cases, parallel initialization and finalization would be beneficial:

join(withA, withB) { (a, b) ->

^^...

}

A structurally concurrent implementation of join requires a polyphonic definition, that is a
simultaneous definition of multiple single-shot suspend functions with a common body:

join fun f(x: Int) & fun g(y: Int) {

return@f (x + y)

return@g (x - y)

}

launch {

delay(Random.nextInt(0, 100))

println(f(5))

}

launch {

delay(Random.nextInt(0, 100))

println(g(3))

}

7



Here is how we can implement simultaneous resource initialization and finalization:

suspend fun <R> join(withA: (once (A)-> Unit)-> Unit,

withB: (once (B)-> Unit)-> Unit,

block: once (A, B)-> R): R {

join fun f(a: A) & g(b: B) & r(): R {

return@r block(a, b)

}

coroutineScope {

launch { withA(^::f) }

launch { withB(^::g) }

return r()

}

}

We can also allow polyphonic method definitions in multi-modal objects, e.g.

class Promise<T> with Awaiting {

abstract suspend fun await(): T

extension Completed(val result: T) {

override fun await() = result

}

modal? extension Awaiting {

join break continue@Completed fun complete(x : T)

& override fun await(): T {

init Completed(x)

return@await x

}

}

Polyphonic definitions tightly intertwine type-checking and control-flow analysis, but it is
the only known way to express arbitrary initialization, finalization, communication, and
synchronization patterns in a structurally concurrent way.

6 Conclusion and future work
Both structured programming (with blocks instead of goto) and structured concurrency enforce
basic correctness by construction and make programs more amenable to both formal and informal
reasoning. We have outlined a coherent framework for structured resource management that
enforces lifecycle safety by construction, facilitates sound mental models for complex behaviours,
and makes concurrent interactive programming amenable to formal reasoning.

Practicality of our proposal has to be evaluated by developing a library of concurrent mutable
collections and a declarative actor-based distributed systems framework akin to the P Language.5

Besides enforcing correctness by construction, there is another mainstreamable way to ensure
correctness: verifiable contract programming,6 for which structured resource management paves
the way. A broad class of contracts only uses a decidable fragment of logic, so a static checker
can either verify that our program adheres to the contract or generate a minimal counterexample.
This way, most functions can be checked to terminate for all valid arguments, sorting methods
can be checked to produce a sorted list, etc. We assume this way it will be possible to develop
an extensive verified library of conflict-free replicated data types (CRDTs) and lock-free data
structures, and ultimately a fine-grained concurrent separation logic framework.

5https://p-org.github.io/P/
6See “Flux: Liquid Types for Rust” by N Lehmann, A Geller, N Vazou, R Jhala

8

https://p-org.github.io/P/
https://arxiv.org/abs/2207.04034

	Introduction
	Bound parameters and object-bound types
	Modal objects
	Modes
	Polyphonic structured concurrency
	Conclusion and future work

