
Academic Kotlin
Alexander Kuklev 1,2 ‹a@kuklev.com›

1Radboud University Nijmegen, Software Science
2JetBrains Research

Modified form of Literate Kotlin can be used for computer science papers and in mathematics as
a language for constructions and proofs. These applications require dedicated extensions, we’ll
outline in this memo. High abuse potential makes some of them undesirable for a general-purpose
programming language, so we propose introducing a separate dialect: Academic Kotlin.

1 Concise signatures
In academic applications, the signatures of functions and polymorphic types get quite convo-
luted. For reasonable readability, it is essential to keep them as short as possible. Significant
improvements can be achieved with space-separated lists of variables sharing the same type

def plus(x y : Int) : Int

and name-based default type conventions:

reserve m : Int, prefix n : Int, suffix count : Int

With this declaration, all identifiers reading m (and also indexed ones, like m2), and multipart
identifiers with the first part n or the last part count (e.g. nUsers and pointCount) are assumed
Int by default. Dependent default type conventions1 facilitate concise polymorphic signatures.

2 Aliases
Mathematics and academic computer science require short variable names and concise notation
for formulas, but short names need descriptions, and fancy operators need pronounceable names.
We propose a dual naming scheme, with pronounceable alphanumeric default identifiers and
descriptions/concise notations (which may include non-ASCII characters and introduce custom
symbolic operators) as aliases, written in backticks afterwards.

val n `element count` = ^^... # field/variable descriptions

class List<T `element type`> # parameter/argument descriptions

enum class Boolean �̀�` # unicode identifiers

def not(b : 𝔹) `¬b` # prefix operators

def factorial(n : ℕ) `n!` # postfix operators

data class Pair<out X, out Y> `X × Y` # infix operators

def floor(x : Float) `⌊x⌋` # closed operators with parameters

def List<T>.get(idx : ℕ) `this[idx]` # postfix operators with parameters

Note that operators can have parameters, e.g. the indexed access operator arr[i] is a postfix
operator with parameter ([_]) . In mathematics, many binary operators, such as tensor and
semidirect products, may have optional parameters represented as subscripts or superscripts.
Parsing techniques developed for the Agda programming language allow handling such operators.

To refer to operators directly, we propose the following notation:

^::(-) for ^::minus ^::(-) for ^::unaryMinu ^::(--) for ^::dec

Spaces on the right or left indicate prefix and postfix operators, respectively.
1http://agda.readthedocs.io/en/v2.7.0/language/generalization-of-declared-variables.html

1

https://orcid.org/0009-0004-1019-4205
a@kuklev.com
http://akuklev.github.io/kotlin/kotlin_literate.pdf
http://agda.readthedocs.io/en/v2.7.0/language/generalization-of-declared-variables.html

3 Operator tightness
By default, operators should have unspecified precedence, so expressions like -n! should be
treated as syntax errors due to the ambiguity (-n)! vs -(n!). Expressions a ∘ b ∘ c for
binary infix operators should also be rejected due to the ambiguity (a ∘ b) ∘ c vs a ∘ (b ∘ c).
However, we propose to support vararg infix operators plus(vararg x : Float) `+` : Float,
in which case chains a + ··· + c are interpreted as plus(a,^^..., c).

We propose to specify the tightness of operators by annotations extending the OperatorCategory
interface. Unlike numbers, operator categories are merely required to form a directed acyclic
graph and do not have to be pairwise comparable, which is a good thing: non-obvious expressions
should not be given arbitrary meanings. Furthermore, operator categories can specify custom
interpretations for chains of operators belonging to that category: The category @EqRel of
comparison operators resolves their chains a < b ≤ c into conjunctions (a < b and b ≤ c).

Infix operators can have different right and left tightness. Minus always binds tighter on the
right, so that a - b - c would resolve to (a - b) - c. It can also be defined to bind tighter
than (+) on the right, but not on the left, so a + b - c + d would parse as ((a + b) - c) + d.

Combining all these techniques we can even embrace the infamous Donald Knuth’s path notation

draw a -- b -- c --cycle # A triangle, (--)-lines are straight

draw a ~~ b ~~ c ~~cycle # A circle through abc, (~~)-lines are curved

draw a ~~ b ~~ c ~- d -- e --cycle # (~-) connect smoothly only on the left side

draw a ~~ b ~~[tension: 1.5, 1]~~ c ~~ d

draw a [curl: k]~~ c ~~[curl: k] d

draw a ~~ b [up]~~ c [left]~~ d ~~ e.

draw (0,0) ~~[controls: (26.8,-1.8), (51.4,14.6)]~~

(60,40) ~~[controls: (67.1,61.0), (59.8,84.6)]~~ (30,50)

enabling a METAFONT/TikZ-compatible declarative reactive technical illustration framework
for dynamic figures in interactive textbooks and educational apps.

4 Implicit definitions
Implicit definitions enable declarative programming whenever objectives can be described by
conditions. They are ubiquitous in mathematical texts, so supporting the widest possible class
of them is highly desirable for a language used in academia. We propose the following notation:

let x y : Float let gcd : Int try let x ?t : Float

x + 2y = 5 n % gcd = 0 x = a + b·t

x - y = 4 m % gcd = 0 x = c + d·t

maximizing { gcd }

A let block contains conditions imposed on the indeterminates declared in its header. Conditions
must uniquely determine the values of the indeterminates except for so-called existential variables
(marked like ?t), which are scoped within the block and not exposed. A let block can only be
compiled if there is an appropriate solver for conditions of the given form on indeterminates of
given types. Solvers have to ensure the existence of a unique solution,2 either at compile-time
(let blocks) or at run-time (try let blocks). At present, we envision three specialized solvers:

• the *-semiring linear equation solver,
• the mixed integer and real linear arithmetic solver,
• an SAT/SMT (boolean satisfiability/satisfiability modulo theories) solver.

Implicit definitions were also introduced into programming by Donald Knuth’s METAFONT.
2Take a = c, b = d = 0 in the rightmost example. Its solution x = c qualifies as unique because t is existential.

2

https://r6.ca/blog/20110808T035622Z.html
https://doi.org/10.1007/978-3-030-55754-6_14

5 Type classes and structure hierarchies
Academic applications require typeclasses we introduce elsewhere.3 We propose modeling type
class inheritance and nominal subtyping after the Arend4 language. Type class subtyping
should soundly represent hierarchies of algebraic structures, which leads to quite intricate cases,
which can be illustrated on the rig (semiring, ring without negation) example:

Diamond problem Ri(n)gs extend monoids in two ways: they form a monoid with respect to
both addition and multiplication, which can be expressed using call-site field renaming:

structure Rig<this R> : Monoid<R>(^::times), AbMonoid<R>(^::plus)

Circularity We can define the class of modules over a given rig, and define (unital associative)
algebras over a given rig as a monoidal object in modules over that ring. Ultimately, we
observe that a rig can be seen as an algebra over ℕ (ring as an algebra over ℤ, abelian
group as a module over ℤ, etc), which should be ideally reflected by subtyping. This issue
can be addressed by allowing nominal (bi-)convertibility to be established retroactively:

structure Module<R : Rig, this M> : AbMonoid<M>(^::plus) { … }

typealias Algebra<R : Rig, this A> = Monoid<A>(^::times) within Module<R>

establish Algebra<ℕ> ≡ Rig

Module<ℕ> ≡ AbMonoid(^::plus)

Rig ≡ Monoid(^::times) within Module<ℕ>

6 Juxtaposition as an operator
Academic Kotlin should follow the mathematic convention of “putting” invisible (⋅)-operators
between consecutive uppercase and mathematical cursive (U+1D44E..U+1D467) letters:

def avg(𝑥, 𝑦) = 𝑥𝑦/2

Digits and apostrophes should be still treated as part of the preceding identifier with digits
rendered as indices. Backticks can be used to access multi-letter uppercase identifiers: `ABC`.

It allows using the customary geometric notation for lines AB, triangles △A1B'A2 and other
point-labeled objects enabling an exceptionally concise and typographically pleasing syntax for
Lean-style tactic-based proofs in geometry. Consider the following adaptation of APRiL5:

establish Pythagoras’ Theorem # △AB…C nondeg. polygon

given △AOB with ∡AOB = ¼ turn # ∡AOB angle, ∠AOB wedge

prove |AB|² = |AO|² + |OB|² # |AB| length, |AB…C| area

take P on [OA⟩ with |OP| = |AO| + |OB| # [AB⟩ ray, AB line

take R on [OB⟩ with |OR| = |AO| + |OB| # �OR circle, [AB] segment

take Q on �OP ∩ �OR with Q ≠ O

prove PORQ is square by # X on/in/inside shape

|PO| = |OR| = |RQ| = |QP| # X on/inside ray/segment

|PR| = |OQ|

^^...

construct midpoint M of [AB] construct centroid O of ABC

take P, Q on �AB ∩ �BA take midpoint A' of [BC]

take M on [AB] ∩ [PQ] take midpoint C' of [AB]

take O on [AA'] ∩ [BB']

3http://akuklev.github.io/kotlin_typeclasses.pdf
4http://arend-lang.github.io/assets/lang-paper.pdf
5http://april-lang.org — APRiL: A geometric PRoof Language

3

http://akuklev.github.io/kotlin_typeclasses.pdf
http://arend-lang.github.io/assets/lang-paper.pdf
http://april-lang.org

	Concise signatures
	Aliases
	Operator tightness
	Implicit definitions
	Type classes and structure hierarchies
	Juxtaposition as an operator

